Toxinology of Marine Venomous Snails

Authors

  • Mohebbi , Gholam Hossein The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
  • Nabipour , Iraj The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
Abstract:

A surprisingly large number of sea snail species are venomous. Cone snail venoms are produced in a lengthy tubular duct from a complex venom gland and form a cocktail of many toxins, particularly conotoxins which have high potency and specificity for their target specific receptors. They inhibit various channels, neuromuscular receptors or hormones of the victim, and interfere in the transmitted signals of the prey, or dissuade predators. Cone snails have an amazing ability to quickly convert between two different types of defense-evoked and predation-evoked venoms in response to defensive or predatory stimuli. Various conotoxins and conopeptides such as α-conotoxins, σ-conotoxins, ω-conotoxins, μ-conotoxins, ψ-conotoxins, τ-conotoxins, δ-conotoxins,  κ-conotoxins and conkunitzins, conantokins, contryphans, Ac1 conotoxins, conoinsulins, granulin-like conotoxins from conoides; augerpeptides derived from the venom peptide family Terebridae; turripeptides from the venom peptide family Turridae; crassipeptides venom peptides from Crassispirids; clathurellipeptides from venomous micro-conoides Clathurellidae, and other toxins such as RFamide peptides and endogenous neuropeptide-like peptides such as conopressins, as well as contulakins have been found in cone snail venoms, which have demonstrated remarkable biological and pharmacological functions. Given the approval of some conotoxins, such as the analgesic medication ziconitide (Prialt®) in clinical trials as well as their biomedical potential, current research has focused on these toxins. The use of integrated venomics approaches has dramatically accelerated the detection of conotoxin sequences. It is anticipated that a better understanding and identification of conotoxins and other toxins derived from other sea snails will lead to their use for the treatment of diseases to which humans have succumbed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Toxinology of Venomous Marine Worms; A Review

Although the widespread distribution of venomous marine worms around the world, the structural and toxinologcal studies of their toxins are still limited.This study was aimed to evaluate the toxicity of poisonous marine worms. Touching the cilium of Chloeia flava and Sipuncula marine worms cause painful inflammation of the skin. Many species of nemertines prey their victims by a flexible prob...

full text

Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails.

Venoms of predatory marine gastropods of the genus Conus show amazing levels of interspecific diversity and are comprised of a cocktail of peptide neurotoxins, termed conotoxins, that are encoded by large gene families. Conotoxin gene family evolution is characterized by gene duplications and high rates of nonsynonymous substitution among paralogues; yet, what controls the differentiation of ve...

full text

Venomous Secretions from Marine Snails of the Terebridae Family Target Acetylcholine Receptors

Venoms from cone snails (Conidae) have been extensively studied during the last decades, but those from other members of the suborder Toxoglossa, such as of Terebridae and Turridae superfamilies attracted less interest so far. Here, we report the effects of venom and gland extracts from three species of the superfamily Terebridae. By 2-electrode voltage-clamp technique the gland extracts were t...

full text

Microhabitats within venomous cone snails contain diverse actinobacteria.

Actinomycetes can be symbionts in diverse organisms, including both plants and animals. Some actinomycetes benefit their host by producing small molecule secondary metabolites; the resulting symbioses are often developmentally complex. Actinomycetes associated with three cone snails were studied. Cone snails are venomous tropical marine gastropods which have been extensively examined because of...

full text

Venomous auger snail Hastula (Impages) hectica (Linnaeus, 1758): molecular phylogeny, foregut anatomy and comparative toxinology.

The >10,000 living venomous marine snail species [superfamily Conoidea (Fleming, 1822)] include cone snails (Conus), the overwhelming focus of research. Hastula hectica (Linnaeus, 1758), a venomous snail in the family Terebridae (Mörch, 1852) was comprehensively investigated. The Terebridae comprise a major monophyletic group within Conoidea. H. hectica has a striking radular tooth to inject ve...

full text

Protease Inhibitors from Marine Venomous Animals and Their Counterparts in Terrestrial Venomous Animals

The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI)-like protease inhibitors, which strongly inhibit trypsin and chymot...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 24  issue 5

pages  505- 581

publication date 2021-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023